• Hydrogen-fluorine exchange in NaBH4-NaBF4
    L. Rude, U. Filso, V. D'Anna, A. Spyratou Stratmann, B. Richter, S. Hino, O. Zavorotynska, M. Baricco, M.H. Sørby, B.C. Hauback, H. Hagemann, F. Besenbacher, J. Skibsted and T.R. Jensen
    Physical Chemistry Chemical Physics, 15 (2013), p18185-18194
    DOI:10.1039/c3cp52815d | unige:30153 | Abstract | Article PDF
 
Hydrogen-fluorine exchange in the NaBH4–NaBF4 system is investigated with a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state 19F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2− complex ion, reproducing the observation of a 19F chemical shift at 144.2 ppm, which is different from that of NaBF4 at 159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 ºC. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF, BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30 % of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8 % for NaBH4 measured by the Sievert’s method under identical conditions, but more than 50 % using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.
  
  • LiSc(BH4)4: A Novel Salt of Li+ and Discrete Sc(BH4)4 Complex Anions
    H. Hagemann, M. Longhini, J.W. Kaminski, T.A. Wesolowski, R. Cerny, N. Penin, M.H. Sørby, B.C. Hauback, G. Severa and C.M. Jensen
    Journal of Physical Chemistry A, 112 (33) (2008), p7551-7555
    DOI:10.1021/jp803201q | unige:3567 | Abstract | Article HTML | Article PDF
LiSc(BH4)4 has been prepared by ball milling of LiBH4 and ScCl3. Vibrational spectroscopy indicates the presence of discrete Sc(BH4)4− ions. DFT calculations of this isolated complex ion confirm that it is a stable complex, and the calculated vibrational spectra agree well with the experimental ones. The four BH4− groups are oriented with a tilted plane of three hydrogen atoms directed to the central Sc ion, resulting in a global 8 + 4 coordination. The crystal structure obtained by high-resolution synchrotron powder diffraction reveals a tetragonal unit cell with a = 6.076 Å and c = 12.034 Å (space group P-42c). The local structure of the Sc(BH4)4− complex is refined as a distorted form of the theoretical structure. The Li ions are found to be disordered along the z axis.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Friday March 02 2018